3.390 \(\int (a+b \sec ^2(e+f x))^{3/2} \tan ^3(e+f x) \, dx\)

Optimal. Leaf size=104 \[ \frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}-\frac{a \sqrt{a+b \sec ^2(e+f x)}}{f} \]

[Out]

(a^(3/2)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f - (a*Sqrt[a + b*Sec[e + f*x]^2])/f - (a + b*Sec[e + f*
x]^2)^(3/2)/(3*f) + (a + b*Sec[e + f*x]^2)^(5/2)/(5*b*f)

________________________________________________________________________________________

Rubi [A]  time = 0.126954, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4139, 446, 80, 50, 63, 208} \[ \frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}-\frac{a \sqrt{a+b \sec ^2(e+f x)}}{f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^3,x]

[Out]

(a^(3/2)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/f - (a*Sqrt[a + b*Sec[e + f*x]^2])/f - (a + b*Sec[e + f*
x]^2)^(3/2)/(3*f) + (a + b*Sec[e + f*x]^2)^(5/2)/(5*b*f)

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^3(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (-1+x^2\right ) \left (a+b x^2\right )^{3/2}}{x} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(-1+x) (a+b x)^{3/2}}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{a \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \sqrt{a+b \sec ^2(e+f x)}}{f}-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \sqrt{a+b \sec ^2(e+f x)}}{f}-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}-\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sec ^2(e+f x)}\right )}{b f}\\ &=\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \sec ^2(e+f x)}}{\sqrt{a}}\right )}{f}-\frac{a \sqrt{a+b \sec ^2(e+f x)}}{f}-\frac{\left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f}+\frac{\left (a+b \sec ^2(e+f x)\right )^{5/2}}{5 b f}\\ \end{align*}

Mathematica [F]  time = 2.05455, size = 0, normalized size = 0. \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^3(e+f x) \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^3,x]

[Out]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^3, x]

________________________________________________________________________________________

Maple [B]  time = 0.407, size = 2150, normalized size = 20.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^3,x)

[Out]

-1/60/f/b/(a+b)^(9/2)*4^(1/2)*(-1+cos(f*x+e))^3*(6*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*b^3
-34*cos(f*x+e)^5*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a^2*b-40*cos(f*x+e)^5*((b+a*cos(f*x+e
)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a*b^2-34*cos(f*x+e)^4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+
b)^(7/2)*a^2*b-40*cos(f*x+e)^4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a*b^2+12*cos(f*x+e)^3*(
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a^2*b+2*cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))
^2)^(1/2)*(a+b)^(7/2)*a*b^2+12*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a^2*b+2*co
s(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a*b^2+6*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+c
os(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a*b^2+30*cos(f*x+e)^5*ln(4*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1
/2)*a^(1/2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*a^(5/2)*(a+b)^(7/2)*b+30*cos
(f*x+e)^5*ln(4*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+4*a*cos(f*x+e)+4*a^(1/2)*((b+a*c
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*a^(3/2)*(a+b)^(7/2)*b^2+6*cos(f*x+e)^5*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)
)^2)^(1/2)*(a+b)^(7/2)*a^3+6*cos(f*x+e)^4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a^3-30*cos(f
*x+e)^5*ln(-4/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-
a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^6*b-135*cos(f*x+e)^5*l
n(-4/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x
+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^5*b^2-225*cos(f*x+e)^5*ln(-4/(a
+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^4*b^3-165*cos(f*x+e)^5*ln(-4/(a+b)^(1/
2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(
f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^3*b^4-45*cos(f*x+e)^5*ln(-4/(a+b)^(1/2)*(-1+c
os(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2
)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^2*b^5+30*cos(f*x+e)^5*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e
))*(cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos
(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^6*b+135*cos(f*x+e)^5*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f
*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^
2)^(1/2)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^5*b^2+225*cos(f*x+e)^5*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*(
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2
)*(a+b)^(1/2)+b)/sin(f*x+e)^2)*a^4*b^3+165*cos(f*x+e)^5*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*co
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)
^(1/2)+b)/sin(f*x+e)^2)*a^3*b^4+45*cos(f*x+e)^5*ln(-2/(a+b)^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*((b+a*cos(f*x+e)
^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b
)/sin(f*x+e)^2)*a^2*b^5-10*cos(f*x+e)^3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*b^3-10*cos(f*x
+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*b^3+6*cos(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+
e))^2)^(1/2)*(a+b)^(7/2)*b^3+6*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(7/2)*a*b^2)*((b+a*cos(f*x+e)
^2)/cos(f*x+e)^2)^(3/2)/sin(f*x+e)^6/cos(f*x+e)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \tan \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^3,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 6.62635, size = 1095, normalized size = 10.53 \begin{align*} \left [\frac{15 \, a^{\frac{3}{2}} b \cos \left (f x + e\right )^{4} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} + 256 \, a^{3} b \cos \left (f x + e\right )^{6} + 160 \, a^{2} b^{2} \cos \left (f x + e\right )^{4} + 32 \, a b^{3} \cos \left (f x + e\right )^{2} + b^{4} + 8 \,{\left (16 \, a^{3} \cos \left (f x + e\right )^{8} + 24 \, a^{2} b \cos \left (f x + e\right )^{6} + 10 \, a b^{2} \cos \left (f x + e\right )^{4} + b^{3} \cos \left (f x + e\right )^{2}\right )} \sqrt{a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}\right ) + 8 \,{\left ({\left (3 \, a^{2} - 20 \, a b\right )} \cos \left (f x + e\right )^{4} +{\left (6 \, a b - 5 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, b^{2}\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{120 \, b f \cos \left (f x + e\right )^{4}}, -\frac{15 \, \sqrt{-a} a b \arctan \left (\frac{{\left (8 \, a^{2} \cos \left (f x + e\right )^{4} + 8 \, a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \,{\left (2 \, a^{3} \cos \left (f x + e\right )^{4} + 3 \, a^{2} b \cos \left (f x + e\right )^{2} + a b^{2}\right )}}\right ) \cos \left (f x + e\right )^{4} - 4 \,{\left ({\left (3 \, a^{2} - 20 \, a b\right )} \cos \left (f x + e\right )^{4} +{\left (6 \, a b - 5 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, b^{2}\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{60 \, b f \cos \left (f x + e\right )^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^3,x, algorithm="fricas")

[Out]

[1/120*(15*a^(3/2)*b*cos(f*x + e)^4*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*
x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f
*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 8*((3*a^2 - 20*a*b)*cos
(f*x + e)^4 + (6*a*b - 5*b^2)*cos(f*x + e)^2 + 3*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(b*f*cos(f*
x + e)^4), -1/60*(15*sqrt(-a)*a*b*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt
((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2))*cos(f*x + e)^
4 - 4*((3*a^2 - 20*a*b)*cos(f*x + e)^4 + (6*a*b - 5*b^2)*cos(f*x + e)^2 + 3*b^2)*sqrt((a*cos(f*x + e)^2 + b)/c
os(f*x + e)^2))/(b*f*cos(f*x + e)^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2)*tan(f*x+e)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \tan \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^3,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^3, x)